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Abstract 

Field-based high-throughput plant phenotyping (FB-HTPP) has been a primary focus for crop improvement to meet 
the demands of a growing population in a changing environment. Over the years, breeders, geneticists, physiologists, 
and agronomists have been able to improve the understanding between complex dynamic traits and plant response 
to changing environmental conditions using FB-HTPP. However, the volume, velocity, and variety of data captured by 
FB-HTPP can be problematic, requiring large data stores, databases, and computationally intensive data processing 
pipelines. To be fully effective, FB-HTTP data workflows including applications for database implementation, data pro-
cessing, and data interpretation must be developed and optimized. At the US Arid Land Agricultural Center in Mari-
copa Arizona, USA a data workflow was developed for a terrestrial FB-HTPP platform that utilized a custom Python 
application and a PostgreSQL database. The workflow developed for the HTPP platform enables users to capture and 
organize data and verify data quality before statistical analysis. The data from this platform and workflow were used 
to identify plant lodging and heat tolerance, enhancing genetic gain by improving selection accuracy in an upland 
cotton breeding program. An advantage of this platform and workflow was the increased amount of data collected 
throughout the season, while a main limitation was the start-up cost.
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Background
Field-based high-throughput plant phenotyping (FB-
HTPP) research programs have steadily increased over 
the last 10  years. Defined as the ability to rapidly and 
accurately phenotype large numbers of field grown 
plants, FB-HTPP has been a primary focus for crop 
improvement to meet the demands of a growing popu-
lation in a changing environment [1–3]. A widely held 
understanding is that novel breeding strategies which 
exploit the natural, genetic variation of high-production 
and high-quality agricultural crops will be a sustainable 
approach to improve yield [4, 5]. One of the biggest bot-
tlenecks in plant breeding today is the ability to rapidly 

phenotype large populations throughout the growing 
season. Current manual techniques are labor intensive 
and time consuming, and often introduce unwanted vari-
ation in the collected data [1]. FB-HTPP when applied 
to breeding programs can contribute toward improv-
ing selection intensity with larger field trials, increasing 
selection accuracy by reducing human error, and identi-
fying novel genetic variation by capturing multiple phe-
notypes over time [6].

Many of the early FB-HTPP adopters adapted techniques 
from aerial and satellite-based remote sensing [7] to close-
range, “proximal” deployment of sensors and imagers on 
terrestrial vehicles [3, 8–14]. Since then unmanned aerial 
systems (UAS) and field-scanners have been increasing in 
popularity. With these various systems, breeders, geneti-
cists, physiologists, and agronomists have been able to 
improve the understanding between complex dynamic 
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traits and plant responses to changing environmental con-
ditions. Using terrestrial-based platforms, Pauli et  al. [15] 
identified temporal patterns of quantitative trait loci (QTL) 
expression for measured canopy temperature in an upland 
cotton recombinant inbred line population, while Tanger 
et al. [16] identified four alleles that had a negative impact 
on grain yield in rice. Rutkoski et  al. [17] improved the 
accuracy of genomic selection models in wheat using UAS 
derived traits. Ge et al. [18] characterized temporal dynam-
ics in plant growth, including water use, using hyperspec-
tral and red, green, blue imagery, while Thorp et  al. [19] 
identified cotton varieties with improved water use effi-
ciency from UAS derived fractional vegetation cover using 
multispectral images. Chlorophyll fluorescence imaging 
has been used to track the effects of viral and fungal patho-
gens, showing a reduction in photosynthesis, before visible 
symptoms occurred [20, 21].

While HTPP has great potential for plant breeding, the 
volume, velocity, and variety of data captured can be prob-
lematic, requiring large data stores, databases, and com-
putationally intensive data processing pipelines before 
application to quantitative trait loci mapping, genome wide 
association studies, genomic selection, and other statisti-
cal analyses. For FB-HTPP to be useful for plant breeders, 
novel workflows including applications for database imple-
mentations, data processing, and data interpretation must 
be developed and optimized [22]. To gain the most impact 
from HTPP data, analysis should occur in near real-time 
to (1) check for errors in the data due to sensor or logger 
malfunctions and (2) guide field management or future 
collection decisions [23]. Fiorani and Schurr [24] further 
stipulated that these data management schema integrate 
experimental metadata to link the measured phenotypes 
with the environmental conditions to enable analysis of 
phenotypic responses.

The main objective of this research was to build upon 
experience with prior platforms and workflows and incor-
porate novel components for data management and 
analysis from a sensing system on a high-clearance trac-
tor, used primarily to support cotton breeding objectives 
at the USDA-ARS research station in Maricopa, Arizona. 
Specific objectives were to (1) describe each aspect of the 
workflow, including data collection, database design, geo-
spatial processing, quality control, visualization, and outlier 
removal and (2) demonstrate the value of the methodology 
as applied to the cotton breeding program at Maricopa, 
Arizona.

Field‑based high‑throughput phenotyping 
workflow
Overview
A general workflow including four main components for 
FB-HTPP including (1) Preparation, (2) Data collection, 

(3) Data processing, and (4) Data analysis was described 
by Thompson el al [14] and were applied to the sensing 
system (Fig. 1). The Preparation and Data collection com-
ponents for the system differ very little from Thompson 
et al. [14] so will not be covered in detail. In the Data pro-
cessing component, data are uploaded to a PostgreSQL 
database via a Python GUI application, and data are geo-
referenced and spatially linked to experimental plots. In 
the Data analysis component, 2 quality control steps are 
performed before subsequent statistical analysis to make 
decisions for the breeding program.

High‑clearance platform and sensor package
An Avenger-Pro high-clearance tractor (LeeAgra Inc., 
Lubbock, TX, USA) was identified as the terrestrial vehi-
cle for retrofitting a FB-HTPP sensing package and data 
acquisition system. Two features of this platform were 
critical for local FB-HTPP activities. First, the tire spac-
ing was adjustable via a hydraulic system to accommo-
date plant row spacings, ranging from 1.80 to 3.07  m. 
Second, hydraulic lift systems were available to vertically 
elevate both the vehicle platform and the sensor boom 
to accommodate variable plant heights over time, with a 
total range of 1.04–2.74 m. The front boom was modified 
by adding a custom frame constructed from 0.04× 0.04 m 
extruded aluminum T-slot tubing, framing members, and 
hardware (Rexroth Bosch Group, Charlotte, NC, USA) 
for attaching proximal sensors and associated hardware 
as previously described by Thompson et al. [25].

Since 2014, several different sensors have been added 
to and removed from the Avenger sensor array; how-
ever, this workflow will focus on the core, “tri-metric” 
sensor package which includes Pepperl + Fuchs UC2000 
(Pepperl + Fuchs Group, Twinsburg, OH, USA) ultra-
sonic transducers to measure canopy height, Apogee 
SI-131 (Apogee Instruments, Logon UT, USA) infrared 
thermometers (IRT) to measure canopy temperature, 
and Crop Circle ACS-470 (Holland Scientific, Lincoln, 
NE, USA) active spectral reflectance sensors to measure 
normalized difference vegetative index (NDVI). Meas-
urements from each sensor were georeferenced by simul-
taneously recording (1) vehicle position from a Trimble 
R6 real-time kinematic (RTK) GPS receiver (Trimble 
Inc., Sunnyvale, CA, USA) via the GGA and RMC NMEA 
strings and (2) vehicle heading from an inertial meas-
urement unit/attitude and head reference system (IMU/
AHRS) sensor (VN-100, VectorNav Technologies, LLC, 
Dallas, TX). Sensor offset distances from the RTK-GPS 
receiver were measured and recorded for geospatial pro-
cessing, as described below. Table 1 provides information 
about each sensor, and the positions of each sensor on 
the boom are shown in Additional file 1: Figure S1. Other 
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sensors were mounted to the sensor boom but will not be 
discussed in this paper.

Sensor data logging and power
Power to the sensors and data loggers was supplied 
by a retrofitted 110  V AC Dynasys auxiliary power 
unit (Tridako Energy Systems Inc., Alliance, NE, USA) 
sourced at 12 and 24  V. Sensor information was logged 
on a PXI-e 1085 data acquisition system (National Instru-
ments, Austin, TX, USA). The PXI-e used a Windows 
7 operating system, and LabView 2014 code (National 
Instruments, Austin, TX, USA) was developed for data 
acquisition. A discrete 200 ms loop was used to sample 
sensor measurements and write sensor data to text files 

with an accompanying timestamp. The sensor output sig-
nals were either an analog voltage or current, or a serial 
RS232 communication updating at a rate of 5  Hz. The 
analog signals were recorded as 0–5 V potentials, and the 
RS232 communication signals were decoded to ASCII 
text. The communication method for each sensor is indi-
cated in Table 1.

Data collection protocol
On scheduled collection days, the sensor platform and 
data acquisition system aboard the Avenger tractor 
underwent a warm-up and calibration period at least 
one hour prior to the start of the field collection. If any 
sensor readings fell outside a pre-determined optimal 

Fig. 1  A workflow for the high-clearance tractor sensor system. Each component contains the work conducted in that section. The red bars and 
blue dotted arrows indicate user input is required before continuing, the black arrows indicate no user input is required to move on to the next 
component
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range, they were re-calibrated or replaced as appro-
priate. A 24-step check list for the start-up and warm-
up procedure for the Avenger platform is provided in 
Additional file  5: Table  S1. After the warm-up period 
was complete the platform height and wheel spacing 
was adjusted to fit the field design and crop for collec-
tion. Metadata on all activities were recorded in a note-
book, then later transcribed to an electronic document 
(Additional file 2: Figure S2). During data collection, the 
tractor’s forward speed was maintained at 0.67  ms−1. 
Once the collection was complete, the Avenger trac-
tor underwent a cool-down period. The warm-up and 
cool-down periods were critical to identify any sensor 
malfunctions that may have occurred during the col-
lection and provide points of reference to correct data 
when possible. After the cool-down period, data from 
the internal 5-RAID hard drive of the PXI-e was trans-
ferred to an external solid state USB3 drive. The files 
were transferred to a windows server following specific 
directory and file naming conventions utilized by the 
processing pipeline application described below. The 
directory and file naming conventions were retained 
from the prior workflow described by Thompson et al. 
[14]. Users found the conventions straight forward and 
easy to follow and, by keeping the same structure, pro-
vides users the opportunity to use the new processing 

pipeline, database, and quality control steps described 
below on archived data collections.

Data storage and hardware
The data collected with the Avenger platform was stored 
on a Dual Intel Xeon 12-Core processor server with Win-
dows Server 2012Rs operating system and additional 
JBODs (Just a Bunch of Drives). The first JBOD con-
tained 24, 8  TB Enterprise HGST 12  Gb/s 7.2  K RPM 
drives (Western Digital, San Jose, CA, USA) and was 
directly connected to the ARECA RAID card on the 
server via mini-SAS3 cables. The second JBOD contained 
44 drives and was connected to the first JBOD out port in 
a daisy-chain manner. The server had 512 GB of memory, 
500  TB of storage post-formatting, and was equipped 
with a 5000 core GPU Nvidia K80 Tesla card for graph-
ics but was not used by the application described below. 
The HTP server was integrated with the USDA network 
and local area network at Maricopa. All users of the HTP 
server have read permissions (i.e., can access, view, and 
copy files from the server) but only the core HTP team 
has read/write permissions (i.e., can create or delete 
folders and files, as well as access, view, and copy data). 
This ensures raw HTP data is properly formatted, main-
tained, and secured and that the server’s file system is 
efficiently maintained. The server was backed up to tape 

Table 1  List of model name, manufacturer, approximate price, number of units purchased, equipment purpose, logging 
system, and  communication (Comm) method for  each sensor used on  the  Avenger high-throughput phenotyping 
platform

These equipment prices reflect special quote pricing when available and some equipment models may no longer be available. Total cost for the equipment was 
$125,446

Figure no Equipment Manufacturer Cost 
(USD)

Units Total cost (USD) Purpose/trait 
captured

Logger system Comm method

1 Trimble R6 receiver Trimble Inc $6995 1 $6995 GPS coordinates PXI-e RS232

2 PXI-e 1085 National Instru-
ments

$58,000 1 $58,000 Data logger n/a n/a

3 VN-100 VectorNav Tech-
nologies

$1250 1 $1250 Inertial meas-
urement and 
heading

PXI-e RS232

4 Apogee SI-131 Apogee Instru-
ments

$682 8 $5456 Canopy tempera-
ture

PXI-e Voltage

5 Crop Circle ACS-
470

Holland Scientific $5000 8 $40,000 Active spectral 
reflectance

PXI-e RS232

6 Pepperl + Fuchs 
UC2000

Pepperl + Fuchs 
Group

$362 4 $1448 Plant height PXI-e RS232

7 HC2S3 probe Campbell Scientific $294 1 $294 Ambient tem-
perature/relative 
humidity

CR1000 Voltage

8 CR1000 Campbell Scientific $2186 1 $2186 Data logger n/a n/a

9 Apogee SP-110 Apogee Instru-
ments

$217 1 $217 Solar irradiance CR1000 Voltage

10 Dynasys auxiliary 
power

Tridako Energy 
Systems

$9600 1 $9600 Power n/a n/a
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(15 TB LTO-7 Ultrium, Hewlett Packard Enterprise, San 
Jose, CA, USA) using a HP MSL2024-LT07 dual tape 
drive (Hewlett Packard Enterprise, San Jose, CA, USA) 
following a two-part back-up schema. The first back-up 
was iterative and occurred every Friday (i.e., only new 
data for that week is backed up); the second back-up was 
the full server and occurred the last Saturday of every 
month. ArcServe 18.0 software (Arcserve, Eden Prairie, 
MN, USA) was used to schedule and manage tape back-
ups. The full server back-up typically required 20–25 h to 
complete onto 3 tapes.

Database design and structure
The HTP server also incorporated the Python graphical 
user interface (GUI) application and PostgreSQL (www.
postg​resql​.org) relational database for the Avenger plat-
form. The database software chosen was PostgreSQL 9.5, 
because it met four criteria of the ALARC Plant Pheno-
typing group; (1) the software must be open source and 
low cost; (2) it must work with multiple operating sys-
tems; (3) it must be able to support large quantities of 
data and multiple concurrent users; and (4) it must sup-
port transactions where either all data is submitted to the 
database or none. These criteria ensured that many col-
leagues and collaborators had access to the database and 
that partial datasets did not contaminate analysis. These 

steps were critical for long-term management of these 
datasets.

The programming language used for the database 
and its associated GUI application was Python 2.7. The 
database design was split by function into three areas: 
Staging, Production, and Public (Fig.  2). The first step 
to begin data upload into the database was to create a 
sensor run file using the metadata recorded during the 
Avenger collection. This file was needed by the database 
to create a master record that related all the output files 
from a collection or “run”. After running the application, 
the first step was to navigate to the folder containing the 
sensor run file and raw data from the PXI-e. Each file was 
then parsed (cleaned) so that bad characters, or incom-
plete data lines, were not brought into the database, while 
keeping the raw files unmodified. The parsed files were 
then read and inserted into Staging tables in the database. 
The application then outputted the parsed or “clean” files 
back into the parent directory in a new folder (clean).

After the files were created and cleaned, the Python 
application made several initial calculations and adjust-
ments to the data, including georeferencing, plant height 
calculations, and spectral reflectance indices. First, the 
latitude and longitude coordinates from the RTK-GPS 
receiver position at each logger timestamp were projected 
to the Universal Transverse Mercator (UTM) coordinate 

Fig. 2  An entity relationship diagram of the PostgreSQL relational database with the different areas (production, staging, public) designated. 
Physical tables are denoted with a blue header and Views (virtual tables) are denoted by a yellow header

http://www.postgresql.org
http://www.postgresql.org
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system (units of meters) as previously described by Wang 
et  al. [26]. The UTM position of each sensor was then 
calculated from the vehicle position, IMU heading data, 
and the known lateral and forward offset distances of 
each sensor to the RTK-GPS receiver. The final calcula-
tions were the adjusted plant height and the reflectance 
indices (NDVI, NDRE). The adjusted plant height (h) was 
calculated as:

where s is the recorded soil line to sensor boom height 
and d is the displacement data measured by the ultra-
sonic sensors. The reflectance indices were calculated as:

where ρNIR is reflectance at 800 ± 5 nm, ρVIS is reflec-
tance at 670 ± 5 nm, and ρRE is reflectance at 730 ± 5 nm 
respectively.

Once the initial calculations and adjustments were 
complete, the values (UTM coordinates, sensor UTM 
coordinates, NDVI) were appended to the parsed Staging 
tables and the sensor run text file was read and loaded as 
a completed run into the ‘sensorrun’ table. This created 
a permanent record of the collection in the database. A 
stored procedure in the database then moved the data 
from the Staging tables into the Production area tables 
and associated them with the ‘sensorrun’ table entry that 
contains the metadata. This step linked all the data from 
the Staging tables to the Metadata for that collection. 
This step is very important as the captured metadata ena-
bles users to link other, non-HTP derived experimental 
and management data to the database. Next, the Python 
application generated comma separated files and wrote 
them back into the parent directory in a new directory 
(processed). These output files came from views within 
the database. A view is a virtual table that can combine 
information from two or more tables. For each of the 
sensor types, the files included the sensor ID, UTM coor-
dinates, timestamp, corresponding data values, and other 
calculated values when applicable. If a geospatial file 
designating experimental plot boundaries in UTM coor-
dinates was provided, new files containing data within 
those boundaries were outputted to the parent direc-
tory in a new folder (clipped). Wang et al. [26] described 
several methodologies for creating georeferenced maps 
that delineate plot boundaries, including using a geo-
graphic information system (GIS) to design field plot 
maps in shapefile format and an algorithm that calculated 

h = s − d

NDVI =
ρNIR− ρVIS

ρNIR+ ρVIS

NDRE =
ρNIR− ρRE

ρNIR+ ρRE

plot boundaries from georeferenced sensor data. Due to 
local availability of GIS expertise and RTK-GPS equip-
ment, the Maricopa HTPP program typically obtains plot 
boundary maps using the former approach. These output 
files contain the same information kept in the Production 
tables of the database. After the Production tables were 
generated and comma separated files outputted, the Stag-
ing tables were deleted and ready for the next collection 
to be loaded.

Accessing the database
The database created for the Avenger data is a geospa-
tially enabled relational database and meets the Ameri-
can National Standard Institute (ANSI) standards for 
Structured Query Language. To retrieve data or sub-
sets of data (custom reports), the user must understand 
Structured Query Language (SQL). Data can be accessed 
in the Public area by any application that can access a 
database, such as geographic information system (GIS) 
software, with a user ID and password. Both ArcGIS 
(ESRI, Redlands, CA, USA) and Quantum GIS (QGIS, 
www.qgis.org) can access the Avenger PostgreSQL data-
base. Tutorials for both ArcGIS and QGIS on establishing 
database connectivity to a PostgreSQL database are avail-
able online. In QGIS, the PostGIS plugin enables users to 
develop SQL statements via the query builder applica-
tion. An advantage to establishing database connectivity 
to a GIS program is that users can quickly see if all UTM 
conversion, sensor offset, and plot boundary calcula-
tions were performed correctly within minutes of being 
uploaded to the database. The GIS software also enables 
users to quickly visualize experimental treatment or gen-
otype differences captured by the data (Fig. 3a). This near 
real-time visualization can guide field management and/
or future data collection decisions, a data pipeline crite-
rion established by White et  al. [23] for FB-HTPP data. 
Other software programs such as SAS (SAS Institute, 
Cary, NC, USA), Jupyter Notebook (www.jupyt​er.org), R 
Studio (R Studio, Boston, MA, USA), and Matlab (Math-
Works Inc., Natick, MA, USA) can also access the data-
base and can be used to develop custom data analysis and 
processing applications.

Data quality control: Step 1
Before statistical analysis of the experimental param-
eters (i.e. treatment or genotype effects) can be assessed 
for the Avenger collected data, a quality control (QC) 
step must be performed. This step, which was missing 
from the prior Thompson et al. [14] workflow, is crucial 
to identify any logging or sensing errors that might have 
been missed during the warm-up and cool-down pro-
cess. The QC pipeline was written in Python 2.7 and uti-
lizes Jupyter Notebook for the user interface. A separate 

http://www.qgis.org
http://www.jupyter.org
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notebook was developed for each sensor type (Crop Cir-
cle, IRT, ultrasonic) to easily visualize common errors 
that can occur. The notebooks utilize “psycopg2”, a Post-
greSQL database adapter for the Python programming 
language, to access the Public area of the database. The 

“ipywidgets” package was utilized to develop drop-down 
options within the notebooks to make navigation of the 
custom reports (SQL statements) more user friendly. 
The “matplotlib” package was used to generate graphs for 
data visualization. The QC notebooks provided simple 

Fig. 3  Infrared thermometry data (°C) for DOY 211 (30-Jul-2015) visualized within the geospatial plot boundaries using QGIS software. The image 
shows the well-watered treatments with cooler canopy temperatures and the water-limited treatments with increased canopy temperatures. 
This provides visual confirmation to the user that irrigation treatments are having an effect (a). Infrared thermometry data for a single plot (1001) 
visualized within the Jupyter Notebook using the “matplotlib” package. The pre-determined canopy temperature boundaries are the red dashed 
lines. The canopy temperature within the geospatial plot boundaries are the blue and green lines while the solid red and orange lines are the body 
temperature of the sensor. This provides visual confirmation to the user that the sensors are working correctly and returning reasonable canopy 
temperature values for cotton grown in Arizona (b)
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statistics about each run and compared those statistics 
to previous runs stored within the database. This enables 
users to see any gradual degradation of sensor outputs 
that might otherwise be overlooked when focused on a 
single collection. The notebooks also allow users to see 
that the same number of records are being collected for 
each sensor on each arm of the sensor boom. Differences 
in the records would alert users to potential problems 
in the data logging itself (i.e. data loops were not being 
returned after the designated amount of time). Users 
can visualize the data against pre-determined thresholds 
(e.g. sensor operational ranges or known “impossible” 
data outputs) for quick assessment of the data quality 
(Fig. 3b). If the data quality does not meet user standards, 
the sensors can be inspected, and a new collection can be 
taken. It is also possible for users to attempt data correc-
tive actions using the warm-up and cool-down values if a 
pattern of error can be detected.

Data quality control: Step 2
Once the data QC1 outputs were complete and 
inspected, an outlier removal process was imple-
mented (QC2). Even though the data was checked for 

sensor and logging errors, data points may still dif-
fer significantly from others within the experimental 
plot boundaries. Two main sources for outliers have 
been identified and are removed in the steps described 
below. These are (1) sensor position deviation from 
the crop row centerline while data is collected due to 
error in maneuvering the Avenger platform (Fig.  4a, 
b), dubbed a “wobble”, and (2) plant sparsity which can 
occur because of poor germination, edge effects, or 
poor management practices. In either situation, there 
is not enough plant material in the sensor field of view 
for a representative value and instead soil or field debris 
is incorporated into the measurement. Another source 
for outliers comes from inevitably driving the platform 
over large holes or bumps (i.e. clods) in the field, which 
changes the pitch and roll of the sensor boom and alters 
the effective field of fiew of the sensors (Fig.  4c). The 
latter type of outliers can be more difficult to identify 
and remove from the dataset; however, the yaw, pitch, 
and roll values outputted from the VectorNav IMU/
AHRS can be used to set a threshold for data removal, 
if desired, or quantify the physcial dynamics of the 
data. As with all processing for Data quality control: 

Fig. 4  Image of cotton plants with the infrared thermometer (IRT) field of view (FOV) outlined in red (a), where FOV1 is centered on the cotton 
crop and FOV2 is no longer centered on the cotton crop due to a row centerline deviation (wobble). The “wobble” visualized in QGIS software within 
the experimental plot boundaries (b). Changes in the sensor FOV due to sensor boom roll and pitch alterations because of holes and bumps in the 
tractor drive path (c). An example of pre-outlier (d) removed data where the distribution is highly variable, and outliers caused by edge effects are 
visible in the north end of the plot. An example of post-outlier (e) removed data from an infrared thermometer after a single iteration where the 
edge effect outliers are removed, and the data better resemble a normal distribution (blue line)
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Step 1, users must determine what is appropriate for 
their experimental design and objectives.

To remove outliers, the HPMIXED procedure within 
SAS (SAS Institute, Cary, NC, USA) was used to fit a 
mixed linear model to each trait (height, canopy tem-
perature, reflectance indices). Outliers were determined 
by examining the Studentized deleted residuals obtained 
from the model [27]. The model parameters depended on 
the experimental design and project objectives. Exam-
ples of models to remove outliers from field-based HTP 
collections can be found in Andrade-Sanchez et  al. [3], 
Pauli et  al. [15], and Thompson et  al. [14, 25]. Outliers 
are removed from the data in an iterative fashion (Fig. 4d, 
e). Once outliers are removed, plot-level means can be 
calculated using the MEANS procedure within SAS, or 
users can perform other types of analyses. Users can also 
utilize custom scripts in R or Python to remove outliers.

Application to plant breeding
As with traditional field measurements, the data from the 
Avenger tractor can be used to select for or against cer-
tain germplasm based on simple agronomic characteris-
tics. For example, final plant height (Fig. 5a) indicates line 
GA2010102 would not be a good commercial line for the 
Maricopa location, because it grows taller than the cotton 
picker header which can cause the main stem to break 
and introduce trash during mechanical harvest. Plotting 
plant height over time can identify germplasm prone to 
lodging due to storms. The lines 0045-14-5, 0045-14-8, 
and Acala 1517-08 reduced in height by almost 10  cm 
between DOY197 and DOY212. During this time frame, 
monsoon storms (high wind and heavy rain) are common 
and can cause cotton varieties with weak stems to split 
and fall over. Using this data, a breeder would determine 
these lines to be storm intolerant and would likely dis-
continue them from the breeding program.

Plotting the normalized difference vegetative index 
(NDVI) over time (Fig. 5b) shows lines adversely affected 
by the onset of high temperatures typical in Arizona dur-
ing July and August. Several lines including Acala 1517-
08, PD07040, and the DP 491 check variety stagnate in 
growth with the onset of the elevated temperatures. 
Once the period of stagnation is over the growth rate is 
less than what is was before the elevated temperatures 
began indicating these lines are susceptible to heat stress. 
However, lines GA2010102, Ark 0705-46, and the UA 222 
check variety maintain steady growth even after the onset 
of heat indicating they are well adapted for heat stress. 
With this information breeders and physiologists can 
develop future experiments to verify the heat adaptation 
and identify physiological mechanisms for adaptation. 
Breeders can also develop mapping populations to iden-
tity genetic regions and molecular markers associated 

with heat adaptation to improve breeding efficiency with 
marker-assisted or genomic selection.

The data provided by the Avenger platform can also be 
used to drive novel selection criteria and predict yield 
parameters to improve the effectiveness of a breeding 
program. For example, reduced canopy temperature has 
often been associated with increased yields in a vari-
ety of crops [28–31]. Breeders may select lines based on 
this criterion in early-generation field trials where small 
plots make accurate yield estimates difficult. Depending 
on the number of plots in the trials, a breeder may only 
get 1–3 measurements during the season, which pro-
vides a limited amount of information for making selec-
tion decisions. Because the Avenger platform can collect 
data at a faster rate than manual methods, more meas-
urements over the season are possible; therefore, breed-
ers can identify which phenotypes at what time are the 
most predictive for yield and select lines based on that 
criteria. For upland cotton grown under water-limited 
conditions, canopy temperature collected on DOY211 
showed a significant correlation with yield, but canopy 

Fig. 5  The calculated plant height (a) and normalized difference 
vegetative index (NDVI) (b) of thirty-three irrigated upland cotton 
breeding lines and variety checks as collected by the Avenger tractor 
on 02-July (DOY183), 16-July (DOY197), and 30-July (DOY211) in 2015 
at the U. of Arizona Maricopa Agricultural Farm in Maricopa Arizona, 
USA. The graphs were generated with the “matplotlib” package for 
Python v3.0
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temperature taken 2 weeks earlier was not significantly 
correlated (Fig.  6). If a breeder only had DOY183 can-
opy temperature, they would only have selected three of 
the top 10 yielding lines, whereas DOY211 data identi-
fied 6 (Table 2). This is an example of how FB-HTPP can 
enhance genetic gain in a breeding program by improv-
ing the selection accuracy.

Advantages and limitations
One of the primary advantages to the Avenger or any 
other high-throughput phenotyping platform is the 
reduction in time to acquire trait data compared to col-
lecting data by hand. In 2015, the time to complete an 
Avenger collection was compared to the time it took 
a summer student, with previous experience, to col-
lect plant height and canopy temperature in a 2.7  ha 
field containing 240 experimental plots of upland cot-
ton grown under well-watered and water-limited 

conditions. It took the student 4 times longer to com-
plete the data collection task, yet the tractor collected 
80 times more measurements (Table  3). For dynamic 
traits like canopy temperature, the time it takes to com-
plete a collection is very important, because time has 
a very large impact on the trait itself. The average can-
opy temperature for each of the 240 experimental plots 
collected by the Avenger platform and the student on 
30-July 2015 is shown in Additional file  3: Figure S3. 
The student started collecting at 09:00 in the north-
western most plot and finished at approximately 13:00 
(MST) in the south-eastern most plot. The tractor fol-
lowed the same path but started at 11:00 and finished 
at approximately 12:30 (MST). The effect of time of day 
on canopy temperature is evident in the data collected 
by the student, because canopy temperature measure-
ments increased following the student’s path through 
the field, indicating the measurements were con-
founded by increases in air temperature. With this data 
the irrigation treatments are not apparent as they are in 
the data collected by the tractor, which could influence 

Fig. 6  Linear regression of canopy temperature to plot weight (yield) under water-limited conditions for (a) canopy temperature measured 02-July 
(DOY183), (b) canopy temperature measured on 16-July (DOY197), and (c) canopy temperature measured on 30-July (DOY211) in 2015 at the U. of 
Arizona Maricopa Agricultural Center in Maricopa Arizona, USA

Table 2  The ten upland cotton breeding lines identified 
with the lowest canopy temperatures for 02-July (DOY183) 
and  30-July (DOY211) compared to  the  10 best yielding 
lines in  2015 at  the  U. of  Arizona Maricopa Agricultural 
Center in Maricopa Arizona, USA

DOY183 DOY211 Best yield

0043-28-1 0043-28-1 Ark 0701-17

0045-14-5 Ark 0701-17 Ark 0705-46

Acala 1517-08 Ark 0711-2 DP1044

Ark 0705-46 GA2011004 GA2011004

Ark 0707-33 GA2009037 GA2009037

GA2010102 GA2010074 GA2010074

GA2011124 LA12306017 LA12306017

GA2009037 LA12306028 LA12306028

GA2009100 NM 13W3007 SG 105

LA12306028 PD07092 ST4946

Table 3  A comparison of  collecting plant phenotypes 
in the field between the Avenger tractor and 1 well-trained 
summer student

These values are averaged over 6 collections from a 2.7 ha field with 240 
experimental plots (12 × 1.02 m) over 6 irrigation basins

Avenger tractor Summer 
student

Total collection time (h) 1.5 4.0

Plots sampled per hour 110 60

Measurements per plot 120 3

Traits per plot (simultaneous) 4 2

Total measurements collected 115,200 1440

Time to upload/process data (h) 6 2.5
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a breeder’s decision on which lines to keep for the fol-
lowing year.

For non-dynamic traits such as plant height, the time to 
collect the data is not as influential; however, because data 
is captured at such a high rate, in-plot variation can be 
detected and explored. The average plant height for each 
of the 240 experimental plots collected by the Avenger 
platform and the student on 16 July 2015 (DOY197) 2015 
is shown in Additional file  4: Figure S4. Comparing the 
Avenger data to the manual measurements showed a root 
mean squared error (RMSE) of 6.7  cm. The within plot 
variation detected by the three manual measurements per 
plot ranged from 0.0 to 13.1 cm with an average stand-
ard deviation from the mean of 3.2 cm. The within plot 
variation detected by the 120 Avenger measurements per 
plot ranged from 7.2 to 12.3 cm with an average standard 
deviation from the mean of 4.3 cm. Since the lines in this 
trial were advanced breeding lines, little to no segrega-
tion of traits was expected, and the larger range of height 
variation in the manual measurements was likely due to 
human error. The ability to detect within-plot variation 
with confidence will be especially important in early-gen-
eration field trials where segregation of traits is expected 
to occur. Due to the large amount of data collected by the 
Avenger platform, that variation can be quantified and 
used to select or discard lines for the following year.

The time to upload and process data from the Avenger 
platform takes more than double that of hand measure-
ments. This is due primarily to the double transfer of 
data, from the PXIe to the hard drive, then the hard drive 
to the server. This limitation is due to local network secu-
rity. If the server were not on the local network only a one 
step data transfer would be needed which would reduce 
the time by ~ 2 h making the total time to collect and pro-
cess data ~ 3.5  h rather than 7.5  h. The large volume of 
data collected by the Avenger or any other high-through-
put phenotyping platform could also be a limitation 
for some breeders. The initial cost for the server and 
JBODS that store the data, database, and processing 
pipeline was ~ $49,500 USD while the tape back-up sys-
tem was ~ $12,000 USD. The annual cost in maintenance, 
upkeep, and new tapes is ~ $3,000 USD. This annual cost 
does not include the salary of the information technology 
(IT) specialist who oversees the maintenance and system 
back-ups. Breeders that have a limited research budget 
may need to explore alternatives, such as cloud-based 
storage and data processing. The cost of the Avenger 
platform itself may also be prohibitive to many breeders. 
The high-clearance tractor was ~ $150,000 USD and the 
sensing and data acquisition equipment was ~ $125,500 

USD (Table  1). As an inexpensive alternative, low-cost 
field carts have been developed [9, 11, 13, 14]. The devel-
opment of custom high-throughput phenotyping plat-
forms and processing pipelines required the cooperation 
of mechanical, electrical, and agricultural engineers, as 
well as IT specialists and data scientists. Institutions that 
do not have access to these groups of people may need to 
explore other, more turn-key, options.

Some final limitations of the Avenger platform or any 
large terrestrial based platform is field accessibility. The 
platform cannot enter a field after heavy rainfall because 
of the potential to get the platform stuck or cause soil 
compaction and ruts. Smaller terrestrial platforms, such 
as proximal sensing carts, have less wet soil restrictions 
because they are lighter weight and have smaller wheels. 
Gantry style or cable driven systems, and unmanned 
aerial systems (UAS) have no field accessibility concerns 
although wind speed or airspace regulations in the case 
of UAS may present difficulties for some field areas. The 
robustness of the Avenger or tractor-based platforms 
makes it possible to mount more sensors which may 
not be possible on smaller, lighter framed carts. How-
ever, image-based sensors (ie. hyperspectral, RGB, or 
chlorophyll fluorescence cameras) can require nearly 
10–20 × the number of images to cover a field when com-
pared to an UAS or gantry system because of the prox-
imity to plants. For high-throughput plant phenotyping 
to be effective, users need to identify what sensors are 
most appropriate for their objectives and the best way to 
deploy those sensors.

Conclusions
The modified Avenger-Pro high-clearance terrestrial phe-
notyping platform is a robust field-based, high-through-
put plant phenotyping platform capable of collecting 
high quality data in a relatively short period of time. The 
semi-automated processing pipeline and database devel-
oped for the platform, cleaned, organized, stored in a 
database, and provided data visualization in a relatively 
short period of time. The database, and user supports 
tools (ie. Jupyter Notebooks) are easy to use and access 
which provides opportunities for data sharing and collab-
oration of these large datasets. The database and associ-
ated metadata provide the means to curate and maintain 
these large datasets for future use in crop modeling or 
machine learning algorithms. The versatile workflow and 
data tools presented in this paper can be applied to other 
FB-HTPP platforms with minimal effort.
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Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1300​7-020-00639​-9.

Additional file 1: Figure S1 The Avenger-Pro high-clearance tractor fitted 
with a modified front boom that carried the proximal sensor array. Each 
number corresponds to the “Figure No.” column in Table 1, which provides 
a description of the equipment, the approximate cost, and purpose.

Additional file 2: Figure S2 Avenger tractor lead technician, Matthew 
Conley, performing pre-collection warm up over the white calibration 
panel, setting the boom height, and double-checking data loggers in the 
field. An example of transcribed metadata.

Additional file 3: Figure S3 Plot-level means for canopy temperature 
among 33 upland cotton lines grown under well-watered and water 
limited conditions on 30 July 2015 (DOY211) at the U. of Arizona, Maricopa 
Agricultural Center in Maricopa Arizona, USA from the Avenger platform 
(left) and manual student collection (right).

Additional file 4: Figure S4 The plant height plot level means for 33 
upland cotton lines grown under well-watered and water limited condi-
tions collected on 16 July 2015 (DOY197) at the U. of Arizona Maricopa 
Agricultural Center in Maricopa Arizona, USA from the Avenger platform 
(left) and manual student collection (right).

Additional file 5: Table S1 Startup procedure.
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